Friday, October 4, 2024

Exploring Models on GDP Growth

We can use the Solow Growth Model as a simple example, which assumes that output (GDP) is determined by the Cobb-Douglas production function:

Y(t)=A(t)K(t)αL(t)1αY(t) = A(t) \cdot K(t)^{\alpha} \cdot L(t)^{1-\alpha}

Where:

  • Y(t)Y(t) is the output at time tt,
  • A(t)A(t) is the level of technology (or productivity),
  • K(t) is the capital stock,
  • L(t)L(t) is the labor input,
  • α\alpha is the capital's share of income.

Breakdown of Key Variables:

  • Savings rate (s): Determines how much of the economy’s output is invested back into capital. Higher savings rates lead to higher levels of capital and output in the steady state.
  • Depreciation rate (δ): Capital wears out over time, and the economy must invest enough to replace depreciated capital.
  • Technological progress (γ): The key driver of long-term economic growth. Technological improvements increase productivity, allowing the economy to produce more output with the same inputs.
  • Labor growth (η): Population and labor force growth influence how fast the economy needs to accumulate capital to keep up with a growing workforce.

Steps to Simulate Economic Growth:

  1. Define Initial Parameters: Set initial values for capital, labor, and productivity.
  2. Simulate Growth Over Time: Use equations to update capital, labor, and productivity at each time step.
  3. Plot the Results: Visualize the simulated economic growth using ggplot2.
CODE:

# Load necessary libraries
library(ggplot2)

# Set initial parameters for the simulation
alpha <- 0.33  # Capital share of income
beta <- 0.02   # Productivity growth rate
savings_rate <- 0.2  # Savings rate
depreciation <- 0.05 # Depreciation rate
labor_growth <- 0.01 # Labor growth rate
time_periods <- 100  # Simulation time horizon

# Initialize variables
A <- 1           # Initial productivity level
K <- 1           # Initial capital stock
L <- 1           # Initial labor input
gdp <- numeric(time_periods)  # Vector to store GDP values over time

# Simulate growth over time using Solow model
for (t in 1:time_periods) {
  # Calculate GDP using Cobb-Douglas production function
  Y <- A * K^alpha * L^(1 - alpha)
  gdp[t] <- Y
  
  # Update capital, productivity, and labor for the next period
  K <- (1 - depreciation) * K + savings_rate * Y  # Capital accumulation
  A <- A * (1 + beta)  # Productivity growth
  L <- L * (1 + labor_growth)  # Labor growth
}

# Create a data frame for plotting
data <- data.frame(
  Time = 1:time_periods,
  GDP = gdp
)

# Plot the GDP growth over time using ggplot2
ggplot(data, aes(x = Time, y = GDP)) +
  geom_line(color = "blue", size = 1) +
  labs(title = "Simulated Economic Growth (Solow Model)",
       x = "Time Period",
       y = "GDP") +
  theme_minimal()


We can create shiny interactive dashboards!


# Load necessary libraries
library(shiny)
library(ggplot2)

# Define UI for the Solow Growth Model Dashboard
ui <- fluidPage(
  
  # App title
  titlePanel("Solow Growth Model Simulation"),
  
  # Sidebar layout with input controls
  sidebarLayout(
    
    # Sidebar panel for inputs
    sidebarPanel(
      
      # Slider input for savings rate
      sliderInput("savings_rate", 
                  "Savings Rate (s):", 
                  min = 0.05, 
                  max = 0.5, 
                  value = 0.2, 
                  step = 0.01),
      
      # Slider input for depreciation rate
      sliderInput("depreciation_rate", 
                  "Depreciation Rate (δ):", 
                  min = 0.01, 
                  max = 0.1, 
                  value = 0.05, 
                  step = 0.01),
      
      # Slider input for labor growth rate
      sliderInput("labor_growth", 
                  "Labor Growth Rate (n):", 
                  min = 0.005, 
                  max = 0.05, 
                  value = 0.01, 
                  step = 0.001),
      
      # Slider input for technological growth rate
      sliderInput("tech_growth", 
                  "Technological Growth Rate (g):", 
                  min = 0.01, 
                  max = 0.05, 
                  value = 0.02, 
                  step = 0.001)
      
    ),
    
    # Main panel for displaying the GDP plot
    mainPanel(
      plotOutput("gdpPlot")  # Output plot
    )
    
  )
)

# Define server logic for the Solow Growth Model
server <- function(input, output) {
  
  # Reactive expression to simulate GDP over time based on user inputs
  solowModel <- reactive({
    
    # Parameters from user inputs
    alpha <- 0.33  # Capital share of income
    s <- input$savings_rate  # User-defined savings rate
    delta <- input$depreciation_rate  # User-defined depreciation rate
    n <- input$labor_growth  # User-defined labor growth rate
    g <- input$tech_growth  # User-defined technological growth rate
    time_periods <- 100  # Time horizon
    
    # Initialize variables
    A <- 1  # Initial productivity
    L <- 1  # Initial labor
    K <- 1  # Initial capital
    gdp <- numeric(time_periods)  # Vector to store GDP values
    
    # Simulate the Solow model over time
    for (t in 1:time_periods) {
      Y <- A * K^alpha * L^(1 - alpha)  # Cobb-Douglas production function
      gdp[t] <- Y  # Store GDP
      
      # Capital accumulation and updates for next period
      K <- (1 - delta) * K + s * Y
      A <- A * (1 + g)  # Productivity grows
      L <- L * (1 + n)  # Labor grows
    }
    
    # Return the GDP data
    data.frame(Time = 1:time_periods, GDP = gdp)
  })
  
  # Render the GDP plot
  output$gdpPlot <- renderPlot({
    data <- solowModel()
    
    # Plot using ggplot2
    ggplot(data, aes(x = Time, y = GDP)) +
      geom_line(color = "blue", size = 1) +
      labs(title = "Simulated Economic Growth (Solow Growth Model)",
           x = "Time Period",
           y = "GDP") +
      theme_minimal()
  })
}

# Run the Shiny app
shinyApp(ui = ui, server = server)

Types of Shocks:

  1. Productivity Shock: A random shock that affects the level of productivity (e.g., technological innovation or a recession).
  2. Capital Shock: A random shock to the capital accumulation process (e.g., natural disasters that destroy capital).
  3. Labor Shock: A random shock to labor growth (e.g., demographic changes or pandemic).

We'll implement a random productivity shock in this example. Each period, the productivity A(t)A(t) will be multiplied by a random factor drawn from a normal distribution to simulate positive or negative shocks.

Example Output:

  • With a low shock volatility, you will see a smooth GDP curve as the economy grows steadily.
  • As you increase the shock volatility, you will notice more fluctuations and random jumps in GDP growth, simulating unpredictable events.





No comments:

Post a Comment

HOT IPO